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We have developed a unique Fokker-Planck code to study the physics of plasmas that are 
trapped in magnetic and potential wells of general shape on a collisional time scale. The code 
was designed primarily to apply to mirror machines, either a simple mirror or a tandem 
mirror. A plasma confined in a mirror machine generally consists of various groups of par- 
ticles trapped magnetically and/or electrostatically depending on their energy, magnetic 
moment, and axial position. Characteristic features of such a plasma are: first, that the bounce 
times of trapped particles are much shorter than the collision times; and second, that particles 
trapped in different axial locations can have the same energy and magnetic moment. The for- 
mer feature allows us to perform bounce-orbit averaging of the kinetic equation, and the latter 
feature indicates that the distribution function can be multivalued. The code solves a 
relativistic Fokker-Planck equation averaged over bounce orbits for all the trapped-particle 
groups. In addition to the Coulomb collision operator, the code includes a synchrotron 
radiation term, a quasilinear rf diffusion operator, and source and loss terms. The numerical 
method consists of a mapping technique and a Galerkin finite-element method. Example 
results using the code for electron-cyclotron resonant heating and neutral beam injection in a 
tandem mirror are also presented. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

The numerical solutions to a Fokker-Planck equation describing collisional 
processes in a plasma provide us with quantitative information on plasma behavior 
(e.g., particle and energy confinement times); thus, they have become an essential 
tool for understanding confinement experiments and for designing larger devices 
and reactors. Many Fokker-Planck studies have been done in areas such as con- 
finement in a magnetic mirror, neutral beam injection in a mirror and a tokamak, 
lower-hybrid current drive, runaway electrons, and ion-cyclotron resonant heating. 
Killeen and his colleagues [l, 21 have made many contributions to these 
Fokker-Planck studies; both in the one- and two-dimensional velocity space and in 
the single- and multi-species cases. Most of these Fokker-Planck studies, however, 
used a square-well model where the magnetic field and potential profiles in the axial 
direction are approximated by a square-well shape with a certain mirror ratio. 
Thus, no spatial variation is involved and the Fokker-Planck equation is solved in 
one- or two-dimensional velocity space. 
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One method of including the axial variation of a plasma trapped in a 
magnetic/potential well is the bounce-averaging technique. This technique is based 
on an assumption that the bounce time is much shorter than the collision time for a 
representative trapped particle. This technique allows us to include the effects of 
axial variation without extending the calculation into three dimensions; the 
equation is still solved in a two-dimensional phase space. An early Fokker-Planck 
code employing bounce averaging was written by Cutler, Pearlstein, and Rensink 
[3] and was used to study mirror confinement of ions. It solves a nonlinear, non- 
relativistic Fokker-Planck equation for ions using a finite difference method. Fyfe 
and Bernstein [4] developed a bounce-averaged code with a linearized non- 
relativistic Fokker-Planck operator to study particle losses from a deep elec- 
trostatic-magnetic well; they employ a finite-element method. Recently a bounce- 
averaged code was developed to study tokamak transport problems by Kerbel and 
McCoy [S]. It uses a finite difference method for a Fokker-Planck operator. Their 
code is capable of solving for a passing particle distribution as well as a trapped 
particle distribution and includes a detailed treatment of rf heating. Note that 
bounce-averaged calculations often show a significant quantitative difference from 
square-well calculations; and this is of great practical importance in designing large 
experimental devices and fusion reactors. 

Another aspect of all the Fokker-Planck codes developed so far is that they can 
treat only a single group of trapped particles. In a mirror machine with more than 
one magnetic well and/or with electrostatic potential, several groups of trapped par- 
ticles exist that interact with each other through Coulomb collisions. In such 
situations, more than one particle occurs with the same energy and magnetic 
moment, and these particles are separated in space. This means that to solve a 
typical problem for a mirror machine, we must deal with a multivalued distribution 
function. To illustrate this, we consider electrons trapped in a mirror system 
(Fig. 1). The magnetic field B has a single well and the potential QJ has a dip and a 

Axial position, z (cm) 

FIG. 1. Magnetic field and potential profiles in the end plug of a tandem mirror. The central cell is to 
the left, and the end wall is to the right. 
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FIG. 2. Effective potential as a function of the axial position with magnetic moment as a parameter. 
This illustrates three groups of trapped electrons and a group of passing electrons from the central cell. 

peak; this represents a typical end-plug configuration for a tandem mirror with 
thermal barriers [6]. The dip in the potential is usually referred to as a thermal 
barrier; and the peak is often referred to as a plug potential. 

It is informative to plot the effective potential for parallel motion of an electron 
as a function of axial position, z. In Fig. 2, we plot @(z) f q@(z), which is the effec- 
tive potential in a nonrelativistic case, with magnetic moment p as a parameter, 
where q[ =Ze] is the particle charge. We see that for a given p and a certain range 
of total energy E, two spatially separated trapped electrons can exist. This fact is 
also represented in the electron phase-space diagram shown in Fig. 3; i.e., the part 
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FIG. 3. Phase-space diagram for electrons in the end plug illustrated in Fig. 1. The arrows indicate 
the interface helow which the phase-space consists of two planes. 
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of the phase-space below boundary 3 consists of two planes. Figure 3 is an example 
of a three-region problem: the first region being limited by boundaries 1 and 3, the 
second by boundaries 1, 2, and 3, the third by boundaries 3 and 4. A “region” refers 
to that part of the phase-space associated with a group of trapped particles. 

In this article, we describe a relativistic Fokker-Planck code developed to solve a 
Fokker-Planck equation in a phase space such as shown in Fig. 3, and we will 
present some numerical results from a few example problems. In Section 2, we 
present the relativistic bounce-averaged Fokker-Planck equation derived by 
Bernstein and Baxter [7], and we discuss boundary conditions. In Section 3, we 
describe the numerical method based on a mapping technique and a Galerkin 
finite-element procedure, which contrasts with the finite difference method 
employed in most existing Fokker-Planck codes. We then present our example 
calculations and the results in Section 4, and our conclusions in Section 5. 

2. RELATIVISTIC BOUNCE-AVERAGED FOKKER-PLANCK EQUATION 

The Fokker-Planck kinetic equation for a distribution function f can be written 
as 

af ,+“.~+$-).[,(E+~“xB)f+rc+rR]=o. (1) 

where t is the time, v is the velocity, x is the position, m is the mass, p [ = ymv] is 
the momentum, y [ = (1 + p2/m2c2)“2 = (l- u2/c2)-“*I is the relativistic factor, c is 
the speed of light, and E and B are electric and magnetic fields including both static 
and rf components. The flux Tc due to small-angle Coulomb collisions is given by 

I-,= -c 
2nZ2Z2 e41n ff b b 

b 4 
(2) 

where subscript b refers to the particle species, and M is the relativistic counterpart 
of the dyadic VvV,lu-u’l [7]. The flux FR represents the radiation reaction 
resulted from synchrotron radiation, which is given by 

where 6 = Be/B,, Q = eB,/mc, y,, = (1 -t p: /m2c2)1/2, and B,, is the static magnetic 
field. 

Applying bounce-average theory [3, 71 to Eq. (1) yields 
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where E [ =mc*(y - 1) + q@] is the total energy, p [ = ~:/2mB,] is the magnetic 
moment, and z [ = f dz/lu,,1] is the bounce time. In Eq. (4) the coefficients on the 
right-hand side represent integrals of the local coefficients along the bounce orbit of 
a particle with a given E and p. Each coefficient consists of three terms: the first is 
the Fokker-Planck coefficient resulting from Coulomb collisions; the second is the 
radiation reaction term; and the last is the quasilinear rf diffusion term. We employ 
numerical integration along the orbit for the Coulomb collision and the radiation 
terms; and we use the analytical result for the rf diffusion terms obtained by 
Bernstein and Baxter [7]. 

For the Coulomb collision and radiation reaction terms, the coefficients in 
Eq. (4) can be written as 

D,, = P dz 
--y-yP’D.PT 
ullm y 

Dsp= 0 
dz 

u ll m2yBo 
P.D.P,, 

D,= 
P 

dz 
-p.A, 
“IlmY 

D,, = Yf 
dz 

0 II m2yBo 
P,.D.P, 

Dw = P 
dz 

--5yPI.D.P,, 
vllm Bo 

.,.=$$pcA, 
0 

(5) 

where D and A are the coefficients of the local kinetic equation expressed in the 
form 

f=$(D$+Af). (6) 

The local coefficients D and A due to Coulomb collisions are given by 

D" = m2V,V,G, 

A’ = -mV,H, 

H=x 
4rcZ2Z2 e41n A 

b bhb, VZhb= -hfb, 
b mmb 

(7) 

G=x 
6 

bgb> Vtgb = %, 
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for nonrelativistic particles, and 

D” = 1 2rcn,mZ2Zie41n A, 
p21 - pp 

y T+ 
2y3m2( ui) 

b P 
3p5 

2y*mp A” = c 2nnbmZ2Zie4h Ab m,p3, 
b 

(8) 

for relativistic particles [7]. Here i?b is the average kinetic energy of particle species 
b, In nb is the coulomb logarithm; and I is the unit dyadic. We employ the non- 
linear, nonrelativistic collision operator, Eq. (7), below a certain energy and the 
linear relativistic operator, Eq. (8), above that energy. Because of the diffusive 
nature of the equation we do not expect a great sensitivity to a small discontinuity 
of the diffusion coefftcients at this energy. This is, of course, a simple approximation 
to fully nonlinear relativistic collision operator. However, it is a good 
approximation if a distribution consists of a nonrelativistic bulk and a small pop- 
ulation of a high energy tail. 

The terms D and A resulting from the synchrotron radiation are given by [7], 

DR=O, 

AR =; e2S22yi 
3c3ym 

Sx(px6)+$&-.P)b-]. 
(9) 

For the rf diffusion, the coefhcients on the right-hand side of Eq. (4) are given by 

D,=D,=O, 

Vj= Uj6Jn(klpj) + WI, 

Wj=~wj[(P1-i~,)J,_,(k,pj)eiB+(t,+i~,)J,+,(k,p,)e-“] 

2nll \‘il for x&l 
(2K)2(i;j/2)p2/3 A&-.~) for x< 1, 

(10) 
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?A! 
v=---O+k,,u,,, . dv 

Y v=zT 
x E 2-213\;i~,~413, 

where n represents the cyclotron harmonic number, subscript j represents the 
stationary phase point (i.e., the resonant point satisfying v = 0), aj is the rf electric 
field at the jth resonant point, uj [ =~,Jrn] and wj [ = plj/m] are local parallel 
and perpendicular momentum-per-unit mass, respectively, B, is the static magnetic 
field, t,, P2, and 6 comprise a right-handed orthogonal set, k is the wave vector, 8 
is the angle between k and @r, o is the rf frequency, Ai( -x) is the Airy function, 
and J,(k,pj) is the nth-order Bessel function of the first kind. The resonant points 
satisfying v = 0 are numerically calculated for a given magnetic field and potential 
profiles. 

With all the coefficients determined as above, we can solve Eq. (4) for each group 
of trapped particles in a phase space such as shown in Fig. 3 with appropriate 
boundary conditions. The necessary and sufficient boundary conditions are 

(1) f regular at u,, = 0 and p = 0 boundary, 
(2) f fixed at loss boundary, 
(3) f or flux r vanishing at E = smax and/or p = pmax, 
(4) f and flux r continuous at interface 

In Fig. 3, the boundary condition (1) at u,, = 0 is applied to boundary 2 and 4; the 
phase-space below these boundaries is inaccessible. Condition (2) is applied to 
boundary 1 and the first segment of boundary 3; these boundaries separate a pass- 
ing particle distribution, which is taken to be fixed, and a trapped particle dis- 
tribution. Condition (4) is applied along the interface between three regions, i.e., the 
second segment of boundary 3. Specifically the flux continuity condition is 
r,+r2+r3=o. 

In the next section, we will describe a numerical method for solving Eq. (4) with 
the above boundary conditions. 

3. NUMERICAL METHOD 

We employ the same method developed by Fyfe et al. [S] in solving Eq. (4). It 
consists of two steps: first, map a region in (p, E) phase-space to a retangular region 
in (x, v) space; and second, use a Galerkin finite-element method. The same 
procedure is also applied to solving the Poisson equation for the Rosenbluth poten- 
tials hb and g,. 

The mapping technique is introduced to represent the curved boundary more 
accurately than is possible when working directly in (11, E), (u,,, u,), or (u, 0) space. 
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Having boundaries running between the grid points is usually unavoidable, unless 
either a mapping or a finite element method is used; this is especially a concern 
when a distribution function is largest along a curved boundary. In a tandem- 
mirror thermal barrier, ions have to be constantly pumped out at the same rate as 
the trapping rate to maintain the density dip. The ion distribution in this situation 
is peaked along the boundary between passing and trapped regions. If one solves 
the problem in (u,, , vl) or (0, 0) space, for example, this boundary is curved and 
cannot be aligned with any grid. Since the trapping rate is directly dependent on the 
derivative of the distribution function on the boundary, the boundary must be 
represented more accurately. The mapping also allows efficient integration over 
finite elements because solutions are obtained in a rectangular geometry. 

The Galerkin method has a convenient feature that will make implementation of 
boundary conditions straightforward. Especially, the Neumann condition (zero flux 
condition) is implemented by simply dropping a surface term in the finite element 
equation. The flux continuity condition at the interface can be satisfied exactly in 
this procedure. 

Note that Eq. (4) is a nonlinear equation in J However, in implementing the 
numerical procedure, we linearize Eq. (4); i.e., in calculating the coefficients, which 
are functionals off, we substitute f from the previous time step. 

3.1. Mapping 

Consider a region in a two-dimensional space with coordinates (S, T) as shown 
in Fig. 4. The coordinates S and Tare typically physical variables such as velocities, 
energy, and magnetic moment. The region is enclosed by two straight lines S = Smin 
and S = S,,, , and two curved lines T = h(S) and T = I(S), where h and I are single- 
valued functions of S and piecewise continuous up to at least the first derivative. 
The transformation is then given by 

x = s, 

y’(Y 
max - Ymin) T- CYmax 4s) - Ymin h(S)1 

49 - 48 
, 

(11) 

which maps the region in (S, T) space into a rectangular region, 

in (x, y ) space. 
Using p and E in place of S and T the transformation Eq. (11) reduces Eq. (4) to 

(12) 
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FIG. 4. Mapping from a physical space in (S, T) to a rectangular space in (x, y). 

where J is the Jacobian of the transformation, 

J=a~ ap Q+414. --= 
ay ax hax - Ymin ’ 

and the new coeffkients are 

D,=D,-ED,,. 
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A simple example of the mapping is shown in Fig. 5. The triangular region in 
(p, E) phase-space shown in Fig. 5a arises for a single magnetic well without poten- 
tial. In this case the mapping transformation from Fig. 5a to Fig. 5b is 

&-@b 

’ = /i(&,, - &)’ 

where & and B, are the magnetic field at the bottom and the mirror throat, 
respectively, and we let ymin = 0, y,,, = 1. Figure SC illustrates the corresponding 
mesh in (u,,, ul) space mapped from the uniform rectangular mesh in (x, y) space. 
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FIG. 5. (a) A phase-space diagram in (k, E) for a single magnetic well; also illustrated is the 
numerical mesh, (b) the phase-space mapped on (x, y) space with a rectangular mesh, (c) the numerical 
mesh in (v,,, uI) space that corresponds to that in (b). 
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As a more complicated example, we consider a case of a single magnetic well with 
a repelling potential (Fig. 6). This is a typical situation that arises in a single mirror 
machine with neutral beam injection. The phase-space diagram in (E, p) 
corresponding to this case is shown in Fig. 7a. Three regions exist: one region 
between boundaries 1 and 3; and two regions enclosed by boundaries 1,2, and 3. 
The latter two regions are on separate planes; they look identical because of the 
symmetry of the profiles of B(z) and q@(z). The particles in these two regions are 
trapped off the midplane and never pass the midplane. We apply the mapping 
[Eq. (1 l)] to each region separately as shown schematically in Fig. 7. Figure 7 also 
illustrates the corresponding mesh in (p, E) space, which is mapped from the 
numerical mesh in (x, v) space. Note that the transformation for the two regions 
(below boundary 3) has a discontinuity in the derivative at point A. This means 
that we have to choose a set of basis functions that allow a discontinuity in the x 
derivative at point A [8]. 

3.2. Galerkin Method 

In the Galerkin finite element method, an approximate solution f to Eq. (12) is 
represented as 

Ptx3 Y3 t)= 5 ci(t) Bi(x, Y)Y (14) 
i=l 

whre Bi(x, y) is the ith basis function in (x, y) space and ci(t) is the ith coefficient. 
The solution j\ is then sought, which satisfies 

af j9 dxdy Jz z Bj = 5, dxdy V . (PVf+ Qf) Bj (j = 1, 2 ,..., N), (15) 

where 9 denotes the mapped rectangular region corresponding to each region in 
(P,E) space, and V*(P*Vf+@) re p resents the right-hand side of Eq. (12) with V 

Axial position, z (cm) 

FIG. 6. Magnetic field and potential proliles of a single mirror with a repelling potential. An example 
of a three-region problem. 

581/66/l-13 
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FIG. 7. (a) Phase-space diagram for the profiles shown in Fig. 6, (b) the phase-space mapped on 
(x, y) space with a rectangular mesh in each region. 

being a gradient operator in (x, y) space. Substituting Eq. (14) into Eq. (15) and 
integrating by parts, we obtain 

dxdy( P * VBi + QBi) . VBj ci 

+ (surface terms) (j= 1, 2,..., N) VW 

or in a matrix notation 

6 . $ = A - c + (surface terms), (16b) 
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where the elements of matrices A and B are 

au= dxdy(P.VBi+QBi)*VBj, I 9 

b,=l dxdy JrBiBj. 
23 

Following Fyfe et al. [S], we chose for the basis function Bi(x, y) a product of one- 
dimensional splines defined on a rectangular mesh, i.e., 

Bik Y) = h(x) tir(~), i=k+N,(Z-l), 

k= 1, 2 ,..., k, N,, I= 1, 2 ,..., N,,, (17) 

where #,Jx) and $[( y) are B-spline basis functions [9]. Typically we use a linear or 
cubic polynomial for #‘s and I&. The integrals in Eq. (16), au and b,, are computed 
by a Gauss quadrature rule; every integral of the form j’s dxdy g(x, y) is 
approximated by 

b 

s s 
dx d dy g(x, Y) = 

a L 
(18) 

where 

d-c 
vi = - /J.+d+C 

2 ’ 2’ 

and wi are the weights and 19~ are the nodes for the N,-point Gaussian quadrature 
scheme on the interval [ - 1, 11. 

Now, let us discuss implementation of the boundary conditions. There are three 
types of boundary conditions to be considered; the first is the Neumann (natural) 
condition (or zero flux). The second is the Dirichlet condition (or fixedf), and the 
third is the flux continuity at the interface. Equation (16) has to be modified to take 
into account these boundary conditions. 

First, the Neumann condition is implemented simply by dropping the surface 
term in each equation for the coefficient c’s associated with the corresponding 
boundary. Second, the Dirichlet condition on a certain boundary can be implemen- 
ted by dropping the surface term and then modifying the elements of matrices A 
and B so that the coefficient c’s associated with the boundary do not change in 
time. Finally, the flux continuity along the interface is implemented as follows. 
Equation (16) is a system of ordinary differential equations for the basis function 
coefficients ci (i = l,..., N); one such system is calculated for each region of the 
phase-space. Note that most of the surface terms are zero except for some particular 
i that is associated with the interface. When two equations, one from a region and 
the other from another region interfaced with it, are added, the surface terms 
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should cancel each other. The two systems of equations for the coefficients can then 
be combined into one with flux continuity satisfied exactly at the interface. This 
same procedure can be used no matter how many regions are connected at the 
interface. Thus, we obtain a combined system of ordinary differential equations 
describing the evolution of all the trapped particles, 

B*.a%*=**,c* 
dt ’ (19) 

where A* and B* represent the combined A and B with modifications resulting 
from all the boundary conditions, and c* is the combined basis function coefficient 
vector. 

Time-differencing Eq. (19), we have 

[B*dt-‘-/IA,*]c,*,,=[B*dt-‘+(l-j?)A,*]e,*, (20) 

where /LI is an implicitness factor and the subscript n represents the values at the nth 
time-step. To invert the matrix on the left-hand side of Eq. (20), we use the sparse 
matrix package developed at Yale University [lo]. 

3.3. Rosenbluth Potentials 

The Rosenbluth potentials hb and g,, satisfy Poisson equations as shown in 
Eq. (7). We chose to solve these by the Galerkin finite element method. Ignoring 
the gyrophase dependence, we have 

(21) 

where v,. and v,, are perpendicular and parallel velocities. For simplicity we drop- 
ped the subscript 6. Note that h and g are functions of axial position z, as well as uI 
and u,,. Equation (21) is to be solved for each z-grid position. To solve Eq. (21) in a 
velocity space 0 < vI, v,, < v,, we let S = vI Iv,,,, T = v,, Iv,,, , and obtain 

i a -- 
sas 

i a -- 
sas 

(22) 

Because the velocity space is square, we can use the same finite element method 
without a mapping. 

The boundary conditions for Eq. (22) are the following: (1) h and g are regular at 
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S=O, (2) ah/aT=dg/aT=O at T=O, and (3) h and g are specified along S= 1 and 
T= 1, i.e., Dirichlet condition. The Dirichlet conditions are given by the following 
integrals: 

h(S, T)=4v:~~dS’S’jb~1-~z”‘2dTlf(Si, T’) ; K(;J.)A;~‘*, ’ 
i=l 

g(S, T) = 4~; jO’ &3’s id’ -s’2P’2 dTf(S’, T’) f E (4, ri) A;‘*, 
i=l 

(23) 

where K and E are elliptic functions of the first and second kind, respectively, and 

A,=(S+S’)*+(T-T’)*, 

A2 = (S + S’)* + (T+ T’)*, 

Yi = (4SS’/A J “2. 

Because the diffusion coefficients D’ and A’ involve the second derivatives of hb 
and g,, we employ basis functions based on cubic B-splines to represent h, and g,. 

4. EXAMPLE CALCULATIONS 

In this section, we present some numerical results of two example problems; the 
first is a neutral beam injection problem for a single mirror and the second is an 
electron-cyclotron resonant heating problem for a tandem mirror with thermal 
barriers. The former is an example of a single-region problem, and the latter is that 
of a three-region problem. 

4.1. Neutral Beam Injection 

One of the key ingredients in the operation of a tandem mirror with thermal 
barriers is the presence of sloshing ions in the end plugs. The sloshing ion dis- 
tribution can be generated by injecting a neutral beam at an oblique angle to the 
magnetic field at the bottom (i.e., midplane) of a magnetic well. This creates ion 
density peaks off the midplane and helps establish a plug potential at one of the 
peaks. 

To model the beam injection, we add the following term to the right-hand side of 
the kinetic equation 

b b 
(24) 

where ah(z) represents the axial profile of the beam; VP and VI are the ionization and 
charge exchange rates; n, [ =j d3vfl is the ion density; sb(v) is the neutral beam 
velocity distribution, and the superscript b denotes the bth component of the beam. 
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50 100 130 
Axial position, z fern) 

FIG. 8. (a) Magnetic field profile used for a neutral beam injection problem. The midplane is at 
z = 0. (b) Density versus axial position at the steady state; (-) result from our code, (- - -) code of 
Cutler er al. (c) Kinetic energy versus axial position at the steady state. 

Equation (24) is integrated numerically along the bounce orbit and added to the 
right-hand side of Eq. (4). The rf diffusion and synchrotron radiation terms are not 
included in this calculation. 

The above example was chosen to model the sloshing-ion experiment in TMX-U 
[ 111. We calculate the end-plug ion distribution only and treat the central-cell ions 
as a fixed passing distribution. The magnetic field profile is shown in Fig. 8a; z = 0 
corresponds to the midplane of the plug. The potential is ignored because the beam 
energy is much larger than the potential generated. Electrons are assumed to be 
Maxwellian with energy (T, = 60 eV) smaller than the ion energy and act as drag 
on the ions. The neutral beam consists of three energy components; 16, 8, and 5.33 
keV injected at 47” with respect to the magnetic field at z = 0. The effects of cold 
gas are also included by adding extracold ion source and charge exchange loss. We 
used 48 x 16 mesh cells of nonuniform size, linear splines for the basis functions, 
2 x 2 quadrature points in each cell, and 16 points in the axial direction where the 
Rosenbluth potentials are calculated. For the Rosenbluth potentials, we used 
16 x 16 cells, cubic splines for the basis functions, and 4 x 4 quadrature points. 

Figures 8b, c show the density and energy versus axial position at the steady 
state, and Fig. 9 shows a contour plot of the distribution function at the midplane, 
z = 0. In Fig. 8 the density and energy obtained from the code of Cutler et al. [3] 
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FIG. 9. Contour plot of the ion distribution function in the momentum space at the midplane that 
corresponds the results shown in Fig. 8. 

are also shown by dashed lines. While our code uses a finite element method for 
both the Fokker-Planck operator and the Rosenbluth potentials, Cutler et al. used 
a finite difference method for the Fokker-Planck operator and a Legendre expan- 
sion technique in solving for the Rosenbluth potentials. These results from two dif- 
ferent codes are in good agreement. Another different feature of the two codes is 
that we use energy and magnetic moment as phase-space variables while Cutler e al. 
use speed and pitch angle. Note that these Fokker-Planck code results compare 
favorably with a TMX-U experiment in Ref. [ 111. 

4.2. Electron-Cyclotron Resonant Heating 

Electron-cyclotron resonant heating (ECRH) is the other key ingredient in the 
operation of a tandem mirror with thermal barriers. The purpose of the ECRH is to 
manipulate the electron-velocity distribution in the end plugs to generate a thermal 
barrier and to enhance a plug potential [6]. The magnetic field and potential 
profiles used in this calculation are those shown in Fig. 1. The ECRH is applied at 
two locations: the thermal barrier and the plug potential peak. The former is to 
help depress the potential by generating mirror-trapped hot electrons, and the latter 
is to enhance the potential by heating the potential-trapped electrons. 

The main objective of this three-region Fokker-Planck calculation is to find a 
steady-state solution for the electron distribution in the end plug. From this 
solution, we can obtain necessary information for operating an end plug (e.g., 
steady-state density and energy of the electrons, power requirement for ECRH to 
maintain such a steady state, and effect of wave polarization and the Doppler shift). 
In this example we have included relativistic kinematics although the results turned 
out to be only weakly relativistic; in many other applications, however, we are 
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interested in studying much higher energy (e.g., several hundred keV to a few MeV) 
electrons for which relativistic formulation is required. 

We assume a fixed density and a temperature at the left mirror throat, deter- 
mined by central-cell electrons with density net = 8 x 1012 cme3 and temperature 
T,, = 0.6 keV. These electrons determine the boundary condition and act as a 
source for the trapped electrons. Ions are assumed to be cold and cause pitch-angle 
scattering of electrons. The ECRH is applied by specifying rf electric field a, in 
Eq. (10). Fundamental heating (o = o,,) is used at the plug potential peak 
(z N 110 cm); and second harmonic heating (o = 20,) is used near the bottom of 
the magnetic field (z = 65 cm). The fundamental electric field is set at 20 V/cm and 
has a Gaussian width of 1 cm about z = 110 cm. The second harmonic electric field 
is set at 90 V/cm with a Gaussian width of 15 cm about z = 65 cm. Only the right- 
handed circularly polarized component is used in this calculation. The synchrotron 
radiation term is not included. These parameters are either expected or considered 
reasonable to be realized in TMX-U. 

The results of the Fokker-Planck calculation show that the projected density and 
energy of the end-plug electrons in TMX-U can be achieved with the available 
ECRH power [12]. The results also indicate that the plug density-potential 
relationship obtained from the code agrees with analysis [13]. Because the main 
physics results have been presented in Ref. [12], we only present part of the 
numerical results here. We used 32 x 12, 20 x 6, and 20 x 8 cells in the three regions, 
respectively, linear splines for the basis functions, 2 x 2 quadrature points in each 
cell, and 31 points in the axial direction, where the Rosenbluth potentials are 
calculated. For the Rosenbluth potential, we used 16 x 16 cells, cubic splines for the 
basis functions, and 4 x 4 quadrature points. 

In Fig. lOa, we show the electron density and energy versus axial position 
obtained from the Fokker-Planck code. For comparison, the results of a Monte 
Carlo code are shown in Fig. lob; the two codes are in good agreement. Figure 11 
shows the electron-distribution function at steady state for three different axial 

FIG. 10. Comparison of (a) our code results and (b) the Monte Carlo code result for the ECRH 
problem. 
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FIG. 11. Contour plot of the electron distribution function in the momentum space. The arrows 
indicate the interface corresponding to that in Fig. 3. (a) Near the plug potential (z= 1lOcm). Also 
shown are the boundaries separating the mirror-trapped electrons, potential-trapped electrons, and the 
pssing electrons from the central cell. (b) At the thermal barrier (z = 0). The boundary shown separates 
the mirror-trapped electrons and the passing electrons. (c) At z = -75 cm. The boundaries shown 
separate the mirror-trapped electrons, the Yushmanov-trapped electrons, and the passing electrons. 

positions: (a) near the plug potential (z N 110 cm), (b) at the thermal barrier 
(z = 0), and (c) at a position (z Y -75 cm) between the left mirror throat and the 
barrier. In Fig. lla, the elliptical region near the origin corresponds to the potetial- 
trapped electrons. The rf heating characteristics resulting from the ECRH fun- 
damental heating are lines with u,, = constant. The distribution in this region is 
rather flat because the rf heating dominates over collisions. The region above 
corresponds to the mirror-trapped hot electrons; the heating characteristics, mainly 
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determined by the second harmonic heating, are roughly parallel to the elliptical 
boundary. Figure llb shows that the mirror-trapped distribution is pulled along 
the heating characteristics line that corresponds to the turning-point resonance for 
the second harmonic (n = 2). The effect of the fundamental (n = 1) heating is less 
obvious here than in Fig. lla. Figure llc shows the distribution where there exist 
Yushmanov-trapped electrons, which are trapped between the left mirror throat 
and the barrier. These electrons occupy part of the elliptical region indicated in 
Fig. 1 lc and are clearly not affected by ECRH. Note that these Yushmanov-trapped 
particles in general do not have a unique center of bounce motion. Therefore, a 
reference point for a single distribution function cannot be chosen to describe all 
the Yushmanov particles; this is the reason why the use of variables E and ,u is 
advantageous. We also note that the distribution function is connected smoothly at 
the interface, which is indicated by arrows in Figs. 1 and 11. 

5. CONCLUSIONS 

We have described a relativistic, multiregion, bounce-averaged Fokker-Planck 
code, which was developed primarily to study the physics of mirror machines on a 
collisional time scale, including neutral beam injection, electron-cyclotron resonant 
heating, and synchrotron radiaion loss. The use of a Galerkin finite element method 
made it easier to implement the boundary conditions, especially at the interface of 
regions. The mapping technique was introduced to determine curved boundaries 
accurately and to improve the efficiency of the finite element procedure. 

We have also presented the results of two example problems using the code; these 
examples show good agreement between our code, other Fokker-Planck codes, a 
Monte Carlo code, and analysis. Although the development of the code was 
motivated by the need to study present and future tandem mirror machines, the 
code is flexible enough to be used for other problems, including those in tokamaks 
(e.g., current drive 1141 by lower-hybrid wave heating or ECRH). 

Two major areas need to be improved or extended: one is a nonlinear relativistic 
collision operator; and the other is the self-consistent potential and finite-/I effect. 
The fully nonlinear relativistic collision operator will be needed to study ECRH 
problems where hot electrons of several hundred keV in energy are involved as in 
MFTF-B [ 151. Recently, Kamey and Fisch [16] derived a Rosenbluth form for 
the collision operator for a weakly relativistic plasma. Their Fokker-Planck 
operator can be implemented in our code for an improved treatment of weakly 
relativistic electron-electron collisions. Including the self-consistent potential and 
finite-/I effect in the code is a complex problem because the phase-space topology 
changes in time (i.e., the multivalued nature of the distribution function changes 
because of the appearance and disappearance of regions in the phase space). The 
extension of the code into these areas is currently in progress. 
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